Skip to main content

Immune System Basics

immune system
The human immune system is a multifaceted entity that is designed to fulfill two tasks: it distinguishes what is “us” from what is “not us,” and then eliminates what is “not us.” Any molecule that can be recognized by the immune system – whether it is self or non-self – is called an antigen. A healthy immune system is capable of effectively handling potentially harmful antigens, including infectious organisms, allergens, and abnormal cells (such as cancer cells).

While not technically part of the immune system, there are several anatomic barriers that must be surmounted by foreign antigens before the immune system is activated: The skin, with its germ-inhibiting sheen of oils and sweat; the mucus that coats the respiratory, gastrointestinal, and urogenital tracts; and specialized, hair-like cilia projecting from respiratory epithelial cells all serve as obstacles that help prevent attacks on the human organism. Any antigen that breaches these barriers can trigger two types of immune response: innate and acquired.

The Innate Immune Response

Innate immunity (also called “natural” or “nonspecific” immunity) does not require prior exposure to a particular antigen in order to be activated. The various components that make up the innate immune response simply recognize foreign antigens as “non-self,” and they react accordingly.

Important components of the innate immune system include:
  • Phagocytic cells (neutrophils and monocytes in the bloodstream; dendritic cells and macrophages in the skin and other tissues) are responsible for “eating” and destroying invading antigens. They also “show” these antigens to other immune cells, thus initiating a cascade of events that ultimately eradicates the antigen and leads to long-lasting immunity.
  • Natural killer (NK) cells are specialized lymphocytes that detect and kill tumor cells and cells infected by viruses.
  • Polymorphonuclear leukocytes (PMNs) release cellular messengers called cytokines that trigger the inflammatory response and recruit more immune cells to areas where they are needed.

The Acquired Immune Response

Acquired immunity (also known as “learned,” “specific,” or “adaptive” immunity) is that component of the immune response that confers immune memory. Following a first encounter with a given antigen, acquired immunity affords a quicker response to that antigen in the future. Vaccinations trigger an acquired immune response, as do initial infections with certain infectious organisms, like chickenpox, measles, or mumps.

Components of the acquired immune response include:
  • T lymphocytes process antigens that are presented to them by phagocytic cells so the antigens can be effectively eliminated. Mature T cells typically only recognize a single, specific antigen; since there are billions of antigens in the environment, the capacity for T cell specialization is nearly limitless. Furthermore, some T cells will heighten the immune response (they secrete cytokines that stimulate other immune cells); others help to suppress the immune cascade once a threat has been addressed; still others are “cytotoxic” and help to kill other cells that are infected, malignant, or foreign (e.g., transplanted tissue).
  • B lymphocytes produce antibodies that bind to foreign antigens, thus making them more easily recognizable to other immune cells. B cells can produce one class of antibody by simply encountering an antigen in the circulation, but this process is slow and only confers limited immunity. However, when B cells encounter specialized T cells, they can be “educated” to produce different classes of antibodies that are manufactured much more quickly and that afford much better immune protection.
  • Antibodies are highly specific and complex proteins that are produced by B cells following exposure to circulating antigens or specialized helper T cells. Each antibody molecule matches only one antigen so, like T cells, B cells have an unlimited capacity to produce antigen-specific antibodies; they are also capable of remembering their uniquely-assigned antigens. Antibodies are ubiquitous: They are dispersed throughout the bloodstream and other tissues or attached to the membranes of immune cells.

Interaction between Innate and Acquired Systems Heightens Immune Response

In order to provide maximum protection against harmful antigens, evolution has conferred a significant degree of overlap between the innate and acquired systems. For example, antibodies that are produced as part of the acquired response will bind to cells that are part of the innate system, thereby accelerating the activity of the latter. Complement, an array of serum proteins that adheres to foreign antigens like butter on bread, stimulates phagocytic cells to engulf the antigens (innate system); at the same time, complement triggers the release of cytokines and the production of antibodies (acquired system).

Together, then, the various constituents of the innate and acquired immune systems cooperate to generate the critical activities of successful immune defense: recognition of harmful antigens; rapid response to those antigens; immune regulation and resolution once the threat has been addressed; and memory of specific antigens to afford effectual responses to future exposures.

steroids online direct usa

Popular posts from this blog

Safeguard the Achilles

One of the most painful tendon injuries is Achilles. But there are also ways to avoid these injuries. Here are some of them: You’ll feel a burning and piercing in the tendon above your heel and it can even make a crackling sound when you move it. Any higher up your calf and it’s more likely that you’ve strained or pulled a muscle. Rupturing your Achilles tendon is a exceptionally painful experience and you’ll know when you’ve done it. Your Achilles tendon connects your calf muscles to your heel bone and is made of thousands of individual fibers of collagen. Restricted blood flow to this area slows repair and pain will worsen if you keep training . Four important factors in healing the Achilles are: rest, ice, compression and elevation. If your tendon is harmed take a break from all weight bearing sport (except swimming) for at least 2 weeks. You can recover from mild injury in a couple of weeks but a severe one can take 5 months. In order to prevent Achilles injury in

Diabetes Food Pyramid

This diabetic food pyramid functions in a similar way to the regular food pyramid. One of the main differences is that the diabetic food pyramid focuses on limiting sugar intake . Diabetes is a disease that prohibits people from eating sugar at the same levels that they used to. This does not mean that all diabetics have to avoid sugar like vampires avoid the sun! Some people have mild cases that enable them to eat sugar once in a while. Others have to avoid it at all costs. The diabetic food pyramid is a lifesaver to many people. Just by looking at the pyramid they can tell which foods to eat and which ones not to. It also suggests serving sizes and suggestions for planning whole meals. The diabetic food pyramid has six categories of food groups. At the bottom the main group is grains, starchy vegetables, and beans. The second grouping on the diabetic food pyramid includes vegetables and fruits . The third includes diary products, meats and other sources of protein. At the t

Causes of Easy Bruising: Reasons Why People Bruise Easily

Bruising , a reddish or purple discoloration under the skin, most often results from trauma to the small blood vessels, called capillaries, but can also occur spontaneously. How and Why Bruises Occur Blood leaks out of the capillaries and accumulates under the skin, gradually absorbing over several days. Bruising most often occurs because people run into objects or experience other trauma. Most bruising is easily explained, but frequent bruising that occurs without obvious cause needs prompt investigation, since several serious diseases can cause bruising. In general, women bruise more easily than men. How Aging Increases the Risk of Easy Bruising Bruising increases as people age for several reasons. Skin thins as people age and the capillaries become more fragile. The layer of fat that cushions blood vessels and protects them from injury becomes thinner as well. Older people often take medications and supplements that thin the blood and contribute to easy bruising. Visi